精英家教网 > 高中数学 > 题目详情
18.以下叙述正确的有(  )
(1)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
(2)分段函数在定义域的不同部分有不同的对应法则,但它是一个函数.
(3)若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2≠∅也能成立.
A.1个B.2个C.3个D.0个

分析 根据函数的定义结合分段函数的性质进行判断即可.

解答 解:(1)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.正确
(2)分段函数在定义域的不同部分有不同的对应法则,但它是一个函数.正确
(3)若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2≠∅也能成立.正确
故选:C

点评 本题主要考查分段函数的定义以及性质的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=0,且f(x+1)-f(x)=-2x+1.
(1)求二次函数f(x)的解析式;
(2)若不等式mf(x)>(m-1)(2x-1)对m∈[-2,2]恒成立,求实数x的取值范围;
(3)是否存在这样的正数a、b,当x∈[a,b]时,f(x)的值域为$[\frac{1}{b},\frac{1}{a}]$,若存在,求出所有的正数a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果用反证法证明“数列{an}的各项均小于2”,有下列四种不同的假设:
①数列{an}的各项均大于2;          ②数列{an}的各项均大于或等于2;
③数列{an}中存在一项ak,ak≥2;   ④数列{an}中存在一项ak,ak>2.
其中正确的序号为③.(填写出所有假设正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与双曲线x2-$\frac{{y}^{2}}{3}$=1
(1)证明二者焦点相同,并求出焦点坐标.
(2)已知二者的一个交点为P,焦点分别为F1,F2,求|PF1|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{2x-{x}^{3},x≤0}\end{array}\right.$,则f[f(5)]=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{{x}^{2}+2x}{\sqrt{2x+1}}$-(2x-3)0的定义域为{x|x>-$\frac{1}{2}$,且x≠$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的周长为18,|AB|=8且A(-4,0),B(4,0),|CA|<|CB|,则C点的轨迹方程为(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0,x<0)
C.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1(y≠0)D.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1(y≠0,x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知公比为q(0<q<1)的等比数列{an}中,a2=2,前三项的和为7.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=a1•a2•…•an,求使0<bn<1的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.记者要为5名志愿者和2名老人拍照,要求排成一排,2位老人相邻但不排在两端的概率为(  )
A.$\frac{2}{7}$B.$\frac{4}{21}$C.$\frac{1}{7}$D.$\frac{2}{21}$

查看答案和解析>>

同步练习册答案