精英家教网 > 高中数学 > 题目详情

【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);

(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.

【答案】(1)见解析(2)

【解析】分析:(1)直接利用频率分布直方图的平均值和中位数公式求解.(2)利用古典概型求这2名市民年龄都在内的概率.

详解:(Ⅰ) 平均值的估计值:

中位数的估计值:

因为

所以中位数位于区间年龄段中,设中位数为

所以.

(Ⅱ) 用分层抽样的方法,抽取的20人,应有4人位于年龄段内,记为,2人位于年龄段内,记为.

现从这6人中随机抽取2人,设基本事件空间为,则

设2名市民年龄都在为事件A,则

,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.

(1)求的值;

(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差,并由此比较两班学生的加工水平的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法正确的有( )

①函数的定义域和值域确定后,函数的对应关系也就确定了;

f(x)=是函数;

③函数y2x(xN)的图象是一条直线;

f(x)=是同一函数.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在[﹣2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1﹣m)<f(3m).

(1)若函数f(x)在区间[﹣2,2]上是奇函数,求实数m的取值范围;

(2)若函数f(x)在区间[﹣2,2]上是偶函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.

(1)若异面直线BE与AC垂直,确定图1中点D的位置;

(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上,事件B=“第二枚硬币反面朝上”.

1)写出样本空间,并列举AB包含的样本点;

2)下列结论中正确的是( .

A.AB互为对立事件 B.AB互斥 C.AB相等 D.PA=PB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

1)求函数在区间上的最大值和最小值;

2)求证:存在大于的正实数,使得不等式在区间有解.(其中为自然对数的底数)

查看答案和解析>>

同步练习册答案