精英家教网 > 高中数学 > 题目详情
下列命题正确的是(  )
①若f(3x)=4xlog23+2,则f(2)+f(4)+…+f(28)=180;
②函数f(x)=tan2x的对称中心是(
2
,0)(k∈Z);
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④设常数α使方程sinx+
3
cosx=α在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=
3
A、①③B、②③C、②④D、③④
考点:命题的真假判断与应用
专题:简易逻辑
分析:求出函数的解析式,然后求出数列的和判断①的真假.利用反例判断②的正误;通过特称命题的否定判断③的正误;请查收的三个零点,求出和判断④的正误.
解答: 解:对于①,若f(3x)=4xlog23+2=4log23x+2,令3x=t,可得f(t)=4log2t+2,
则f(2)+f(4)+…+f(28)=4log22+2+8log22+2+12log22+2+16log22+2+20log22+2+24log22+2+28log22+2+32log22+2=160≠180,所以①不正确.
对于②,函数f(x)=tan2x的对称中心是(
4
,0)(k∈Z),所以②不正确.
对于③,“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;满足特称命题的否定形式,所以③正确.
对于④,设常数a使方程sinx+
3
cosx=a化为2sin(x+
π
3
)=a,在闭区间[0,2π]上恰有三个解x1=0,x2=
π
3
,x3=2π,则x1+x2+x3=
3
.所以④正确.
故选:D.
点评:本题考查命题的真假的判断与应用,可以采用排除法解答,方便快捷,本题考查函数的解析式的求法,命题的否定,函数的零点以及三角函数的对称轴的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根所得数据画了样本的频率分布直方图(如图所示)为了进一步分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3000元/月)收入段应抽出(  )人.
A、10人B、15人
C、20人D、25人

查看答案和解析>>

科目:高中数学 来源: 题型:

根据工作需要,现从4名女教师,a名男教师中选3名教师组成一个援川团队,其中a=
4
0
5
8
xdx,要求团队中男、女教师都有,则不同的组队方案种数为(  )
A、140B、100
C、80D、70

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x-1)5=a5(x+1)5+a4(x+1)4+a3(x+1)3+a2(x+1)2+a1(x+1)+a0,则a1+a2+a3+a4+a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程为x=
3
cosα y=3sinα 以原点O为极点,以x轴正半轴为极轴建立极坐标系,直线1的极坐标方程为ρcos(θ+
π
6
)=1.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设M是曲线C上的点,求M到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为2的定圆C外一定点A,且AC=4,在圆上任取一点P,以AP为一边逆时针作等边△APQ,当P在圆上运动时,建立适当的极坐标系,求点Q轨迹的极坐标方程,并转化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:0.008
1
3
-(
27
8
)-
2
3
+
3
3
3
2
612

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F(2,0),设A,B为双曲线上关于原点对称的两点,以AB为直径的圆过点F,直线AB的斜率为
3
7
7
,则双曲线的离心率为(  )
A、
3
B、
5
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-(a-2)x-alnx.
(1)若函数f(x)在[1,2]上的最小值为1,求实数a的值;
(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值.

查看答案和解析>>

同步练习册答案