精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的最大值;

(2)若对于任意,均有,求正实数的取值范围;

(3)是否存在实数,使得不等式对于任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

【答案】(1)见解析;(2);(3)见解析.

【解析】分析:(1)先得出g(x)的具体表达式,然后结合基本不等式即可;

(2),设.则恒成立,接下来只需研究函数单调性确定其最小值解不等式即可;(3)存在实数,使得不等式对于任意恒成立,即存在实数,使得不等式对于任意恒成立,故研究函数单调性确定函数的最大值解不等式求解即可.

详解:

(1)

=

当且仅当即当时取,所以当时,.

(2)

.

恒成立,

时,在区间上单调增.

,不成立.

时,在区间上单调减,

在区间上单调增.

从而,,所以.

(3)存在实数,使得不等式对于任意恒成立,

即存在实数,使得不等式

于任意恒成立,

,则

时,,则为增函数.

,此时不成立.

时,由得,

时,,则为增函数.

时,,则为减函数.

所以

.

满足题意当时,令,则,则

时,为减函数.

,不成立,

时,为增函数.

,不成立综上,时满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:

失眠

不失眠

合计

晚上喝绿茶

16

40

56

晚上不喝绿茶

5

39

44

合计

21

79

100

由已知数据可以求得:,则根据下面临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的结论是( )

A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”

B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”

C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”

D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有三座城市,城在城的正西方向,且两座城市之间的距离为城在城的正北方向,且两座城市之间的距离为.由城到城只有一条公路,甲有急事要从城赶到城,现甲先从城沿公路步行到点(不包括两点)处,然后从点处开始沿山路赶往城.若甲在公路上步行速度为每小时,在山路上步行速度为每小时,设(单位:弧度),甲从城赶往城所花的时间为(单位:).

(1)求函数的表达式,并求函数的定义域;

(2)当点在公路上何处时,甲从城到达城所花的时间最少,并求所花的最少的时间的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题:函数上单调递减,命题:对任意实数,不等式恒成立.

(1)写出命题的否定,并求非为真时,实数的取值范围;

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,满足.

(Ⅰ)(i)求数列的通项公式;

(ii)已知对于,不等式恒成立,求实数的最小值;

(Ⅱ) 数列的前项和为,满足,是否存在非零实数,使得数列为等比数列? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.

(1)求的值;

(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3 , 则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣ ]上的所有零点的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是(
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(2 ),曲线C的参数方程为 (α为参数).
(1)直线l过M且与曲线C相切,求直线l的极坐标方程;
(2)点N与点M关于y轴对称,求曲线C上的点到点N的距离的取值范围.

查看答案和解析>>

同步练习册答案