【题目】设函数f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函数f(x)在R上单调递减,求a的取值范围
(2)当a>0时,求f(|sinx|)的最小值.
【答案】
(1)解:∵f(x)=ex(ax2﹣x﹣1),
∴f'(x)=ex(ax2﹣x﹣1)+ex(2ax﹣1)=ex[ax2+(2a﹣1)x﹣2],
①a=0时,显然不满足,
②当a≠0时,f'(x)≤0恒成立,
即a<0且(2a﹣1)2+4×2×a≤0,所以
(2)解:①当 ,
②当
【解析】(1)先求导,再根据导数和函数的单调性的关系,即可求出a的范围.(2)讨论a的取值范围,再根据导数求函数的单调性,从而可求出函数的最小值.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )
A. 至少有一个白球;至少有一个红球 B. 至少有一个白球;红、黑球各一个
C. 恰有一个白球;一个白球一个黑球 D. 至少有一个白球;都是白球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数满足,且当时,,对任意R,均有.
(1)求证:;
(2)求证:对任意R,恒有;
(3)求证:是R上的增函数;
(4)若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中是实数.
(l)若 ,求函数的单调区间;
(2)当时,若为函数图像上一点,且直线与相切于点,其中为坐标原点,求的值;
(3) 设定义在上的函数在点处的切线方程为,若在定义域内恒成立,则称函数具有某种性质,简称“函数”.当时,试问函数是否为“函数”?若是,请求出此时切点的横坐标;若不是,清说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com