精英家教网 > 高中数学 > 题目详情
某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值
(1);(2)若,则当每本书定价为元时,出版社一年的利润最大,最大值(万元);若,则当每本书定价为11元时,出版社一年的利润最大,最大值(万元).

试题分析:本题是实际问题的考查,考查函数的最值,考查利用导数研究函数的单调性最值.第一问,利用每本书的销售利润销售量列出表示式,在这一问中,要注意注明函数的定义域;第二问,利用导数求函数最值,先求导数,令导数为0,解出方程的根,由于这是实际问题,应考虑根必须在定义域内,讨论根是否在内,分2种情况,分别判断单调性求出最值,最后综合上述2种情况得出结论.
试题解析:(1)该出版社一年的利润(万元)与每本书定价的函数关系式为:
.     5分(定义域不写扣1分)
(2).       6分
或x=20(不合题意,舍去).    7分
.在两侧的值由正变负.
①当时,
即是增函数,在是减函数.

②当上是增函数,

所以
答:若,则当每本书定价为元时,出版社一年的利润最大,最大值(万元);若,则当每本书定价为11元时,出版社一年的利润最大,最大值(万元)          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

,函数.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,().
(1)设,令,试判断函数上的单调性并证明你的结论;
(2)若的定义域和值域都是,求的最大值;
(3)若不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设定义在R上的函数f(x)是最小正周期为2π的偶函数;f′(x)是f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x时,f′(x)>0.则函数yf(x)-sin x在[-2π,2π]上的零点个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的导函数,则函数的单调减区间是 _     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数满足:,且对于任意的,都有,则不等式的解集为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的导函数,则的单调递减区间是      .

查看答案和解析>>

同步练习册答案