【题目】若定义在上,且不恒为零的函数满足:对于任意实数和,总有恒成立,则称为“类余弦型”函数.
(1)已知为“类余弦型”函数,且,求和的值;
(2)证明:函数为偶函数;
(3)若为“类余弦型”函数,且对于任意非零实数,总有,设有理数、满足,判断和大小关系,并证明你的结论.
【答案】(1),;(2)证明见解析;(3),理由见解析.
【解析】
(1)令,可求出的值,令可求出的值;
(2)令,代入题中等式得出,可证明出函数为偶函数;
(3)令,证明出,即可说明对任意、且,有,然后设,,、是非负整数,、为正整数,利用偶函数和前面的结论,即可得出和的大小关系.
(1)令,,则有,,.
令,则有,所以,;
(2)令,可得,,
由于函数的定义域为,因此,函数为偶函数;
(3)时,,,
所以,,
令,即对任意的正整数有,
则,
所以,对于任意正整数,成立,
对任意的、且,则有成立,
、为有理数,所以可设,,其中、为非负整数,、为正整数,则,,
令,,,则、为正整数,
,,所以,,即,
函数为偶函数,,,.
科目:高中数学 来源: 题型:
【题目】某家具公司生产甲、乙两种书柜,制柜需先制白胚再油漆,每种柜的制造白胚工时数、油漆工时数的有关数据如下:
工艺要求 | 产品甲 | 产品乙 | 生产能力(工时/天) |
制白胚工时数 | 6 | 12 | 120 |
油漆工时数 | 8 | 4 | 64 |
单位利润 | 20元 | 24元 |
则该公司合理安排这两种产品的生产,每天可获得的最大利润为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①命题“若,则”的否命题为“若,则”;
②“”是“”的必要不充分条件;
③命题“,使得”的否定是:“,均有”;
④命题“若,则”的逆否命题为真命题
其中所有正确命题的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①越小,X与Y有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;③“若,则类比推出,“若,则;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为,第二次取出的小球标号为.
(1) 记事件表示“”, 求事件的概率;
(2) 在区间内任取2个实数, 记的最大值为,求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和,为棱上的点,,.
(1)若为棱的中点,求证://平面;
(2)当时,求平面与平面所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com