精英家教网 > 高中数学 > 题目详情

【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在,使函数成立;

1)请给出一个的值,使函数

2)函数是否是集合M中的元素?若是,请求出所有组成的集合;若不是,请说明理由;

3)设函数,求实数a的取值范围.

【答案】1=2;(2)是,3

【解析】

1)利用列不等式,由此求得的一个取值.

2)假设存在符合题意,验证,由此判断出的所有可能取值.

3)利用列不等式,对分成三种情况进行分类讨论,由此求得的取值范围.

1)当时,依题意在定义域内存在,使函数成立,而,即,即,故可取,此时.

(2)假设存在符合题意,而,即,即,化简得,解得.所以函数是集合M中的元素,且.

3)由于函数,由,得①,.

时,①成立.

时,①的左边为负数,右边为正数,即①成立.

时,①可化为,也即存在,使②成立.

时,显然存在,使②成立;

时,②化为,显然存在,使②成立.

,即时,不等式对应的一元二次方程,开口向下,且判别式,由于,所以,所以不存在,使②成立.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)曲线在点处的切线垂直于直线,求的值;

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绝对值|x1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数ab的几何意义即为点x与点a、点b的距离之和.

1)直接写出的最小值,并写出取到最小值时x满足的条件;

2)设a1a2≤…≤an是给定的n个实数,记S=.试猜想:若n为奇数,则当x      S取到最小值;若n为偶数,则当x      时,S取到最小值;(直接写出结果即可)

3)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

1)求过点且与圆相切的直线方程.

2)若为圆上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥B-AEDC中,平面AEDC⊥平面ABC,FBC的中点,PBD的中点,且AE//DC,ACD=BAC=90°,DC=AC=AB=2AE

(1)证明:EP⊥平面BCD;

(2)DC=2,求三棱锥E-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,C与l有且仅有一个公共点.

(Ⅰ)求a

(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.

图1 图2

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案