精英家教网 > 高中数学 > 题目详情

在计算“ ”时。某同学学到了如下一种方法:

先改写第项:

由此得

相加,得=

类比上述方法,请你计算其结果为____。

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)]由此得
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3)

n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,

其结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“
1
1×2
+
1
2×3
+…+
1
n(n+1)
(n∈N)”时,某同学学到了如下一种方法:
先改写第k项:
1
k(k+1)
=
1
k
-
1
k+1

由此得
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
4
1
n(n+1)
=
1
n
-
1
n+1

相加,得
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1
=
n
n+1

类比上述方法,请你计算“
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
(n∈N)”,其结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“”时,某同学学到了如下一种方法:

先改写第k项:由此得

相加,得

类比上述方法,请你计算“”,其结果为          

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷十三文科数学 题型:填空题

在计算“”时,某同学学到了如下一种方法:先改写第k项:由此得

相加,得

类比上述方法,请你计算“”,其结果为             

 

查看答案和解析>>

同步练习册答案