精英家教网 > 高中数学 > 题目详情

【题目】已知某蔬菜商店买进的土豆(吨)与出售天数(天)之间的关系如表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅰ)请根据表中数据在所给网格中绘制散点图;

(Ⅱ)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程(其中保留2位有效数字);

(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?

附:

【答案】(1)见解析(2).(3)买进土豆40吨,预计可销售27天.

【解析】试题分析:

(1)利用题中的数据绘制散点图即可;

(2)利用系数计算公式可得 回归直线方程为

(3)根据回归方程可预测买进土豆40吨,可销售27天.

试题解析:

解:(Ⅰ)散点图如下所示:

)依题意, (234567912)6 (12334568)4

,∴

∴回归直线方程为

)由()可知当时,

故买进土豆40吨,预计可销售27天.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计) 即为中奖.

乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.

问:购买该商品的顾客在哪家商场中奖的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(1+x)+lg(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则xf(x)<0的解集为(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或0<x<3}
C.{x|﹣3<x<0或0<x<3}
D.{x|x<﹣3或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.

(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的离心率为,短轴的一个端点到右焦点的距离为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若时,不等式成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案