【题目】有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )
A.2B.C.4D.
科目:高中数学 来源: 题型:
【题目】定义为个正数、、、的“均倒数”.已知正项数列的前项的“均倒数”为.
(1)求数列的通项公式;
(2)设数列的前项和为,若对一切恒成立,试求实数的取值范围;
(3)令,问:是否存在正整数使得对一切恒成立,如存在,求出值,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的,,则输出的的值为( )
A.4B.5C.6D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).
(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),为的导函数,且.
(1)求实数的值;
(2)若函数在处的切线经过点,求函数的极值;
(3)若关于的不等式对于任意的恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4名同学去参加校学生会活动,共有甲、乙两类活动可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪类活动,掷出点数为1或2的人去参加甲类活动,掷出点数大于2的人去参加乙类活动.
(1)求这4个人中恰有2人去参加甲类活动的概率;
(2)用,分别表示这4个人中去参加甲、乙两类活动的人数.记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有四个关于充要条件的命题:①“向量与非零向量共线”的充要条件是“有且只有一个实数使得;②“函数为偶函数”的充要条件是“”;③“两个事件为互斥事件”是“这两个事件为对立事件”的充要条件;④设,则“"是“为偶函数”的充分不必要条件.其中,真命题的序号是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com