精英家教网 > 高中数学 > 题目详情
求不等式3≤|x2-1|<4的解集.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:把要解的不等式等价转化为与之等价的两个不等式组,求出每个不等式组的解集,再取并集,即得所求.
解答: 解:由不等式3≤|x2-1|<4 可得
|x2-1|≥3
|x2-1|<4
,即
x2-1≥3,或x2-1≤-3
-4<x2-1<4
,即
x≥2,或x≤-2
-
5
<x<
5

故不等式的解集为{x|-
5
<x≤-2,或 2≤x<
5
}.
点评:本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(0,2)是抛物线x2=ay的焦点.
(1)求抛物线方程;
(2)若点P(x0,y0)为圆x2+y2=1上一动点,直线l是圆在点P处的切线,直线l与抛物线相交于A,B两点(A,B在y轴的两侧),求平面图形OAFB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只口袋内装有大小相同的5只球,其中3只白球2只黑球,从中一次摸出两只球.
(1)共有多少个基本事件,并列出.
(2)摸出的两只球都是白球的概率.
(3)摸出的两只球是一黑一白的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若α=β,则sinα=sinβ”的逆命题为真命题
B、已知命题p:函数f(x)=tanx的定义域为{x|x≠kπ,k∈Z},命题q:?x∈R,x2-x+1≥0;则命题p∧q为真命题
C、“a=2”是“直线y=-ax+2与直线y=
a
4
x-1垂直”的必要不充分条件
D、命题“?x∈R,使得x2+2x+3<0”的否定形式是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面ABCD⊥平面ABE,四边形ABCD是矩形,AD=AE=BE=2,M、H分别是DE、AB的中点,主(正)视图方向垂直平面ABCD时,左(侧)视图的面积为
2

(1)求证:MH∥平面BCE;
(2)求证:平面ADE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF∥平面PCE;
(2)若二面角P-CD-B为45°,AD=2,CD=3,求四面体FPCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知sin2x+cos2x=1,函数f(x)=-
1
2
-
a
4
+acosx+sin2x(0≤x≤
π
2
)的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数满足f(0)=1,且在x=2处取得最小值-3.
(1)求f(x)的解析式;
(2)若y=f(x)+2ax在[-1,1]上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图所示,则这个几何体的表面积是
 

查看答案和解析>>

同步练习册答案