精英家教网 > 高中数学 > 题目详情

【题目】某几何体的三视图如图所示,则该几何体的体积为( )

A. 64 B. 32 C. 96 D. 48

【答案】A

【解析】根据几何体的三视图如图所示可知,该几何体为一个长方体挖去一个顶点在长方体的下底面,底面为正方形且与长方体的上底面相同的四棱锥,体积为长方体的体积减去四棱锥的体积,故正确答案为A.

点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若函数的单调递减区间为,求函数的图象在点处的切线方程;

2若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,⊙O1与⊙O2外切于点P,从⊙O1上点A作的切线AB,切点为B,连AP(不过O1)并延长与⊙O2交于点C.

(1)求证:AO1∥CO2
(2)若 ,求⊙O1的半径与⊙O2的半径之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCDMN分别是PABC的中点,且AD=2PD=2.

(1)求证:MN∥平面PCD

(2)求证:平面PAC⊥平面PBD

(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=x2+(2a+1)x+a2+3aaR).

(Ⅰ)若函数fx)在[0,2]上单调,求a的取值范围;

(Ⅱ)若fx)在闭区间[mn]上单调递增(其中mn),且{y|y=fx),mxn}=[mn],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若为偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 的中点,过三点的平面交 的中点,求证:

(1)平面

(2)平面

(3)平面平面.

查看答案和解析>>

同步练习册答案