分析 (I)由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知等式可得2sinBcosC=sinB,结合sinB>0,可得cosC=$\frac{1}{2}$,由于C∈(0,C),可求C的值.
(II)由已知利用余弦定理可得:a2-2a-3=0,解得a的值,进而利用三角形的面积公式即可计算得解.
解答 (本题满分为12分)
解:(I)∵2bcosC=acosC+ccosA,
∴由正弦定理可得:2sinBcosC=sinAcosC+cosAsinC,可得:2sinBcosC=sin(A+C)=sinB,
∵sinB>0,
∴cosC=$\frac{1}{2}$,
∵C∈(0,C),
∴C=$\frac{π}{3}$…6分
(II)∵b=2,c=$\sqrt{7}$,C=$\frac{π}{3}$,
∴由余弦定理可得:7=a2+4-2×$a×2×\frac{1}{2}$,整理可得:a2-2a-3=0,
∴解得:a=3或-1(舍去),
∴△ABC的面积S=$\frac{1}{2}$absinC=$\frac{1}{2}×3×2×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$…12分
点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (0,2) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 直角三角形 | C. | 等边三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com