精英家教网 > 高中数学 > 题目详情
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线交双曲线的右支于点P,若∠PF1F2的平分线与∠F1PF2的平分线的交点为Q(1,1),则双曲线的渐近线方程为(  )
A.y=±$\sqrt{3+2\sqrt{3}}$xB.y=±$\sqrt{2\sqrt{3}-3}$xC.y=±($\sqrt{3}$+1)xD.y=±($\sqrt{3}$-1)x

分析 由题意△F1PF2的内心坐标为Q(1,1),a=1,利用过F1作倾斜角为30°的直线的方程为y=$\frac{\sqrt{3}}{3}$(x+c),Q到直线的距离为$\frac{|\frac{\sqrt{3}}{3}-1+\frac{\sqrt{3}}{3}c|}{\sqrt{\frac{1}{3}+1}}$=1,求出c,即可得出结论.

解答 解:由题意△F1PF2的内心坐标为Q(1,1),∴a=1,
∵过F1作倾斜角为30°的直线的方程为y=$\frac{\sqrt{3}}{3}$(x+c),
∴Q到直线的距离为$\frac{|\frac{\sqrt{3}}{3}-1+\frac{\sqrt{3}}{3}c|}{\sqrt{\frac{1}{3}+1}}$=1,
∴c=1+$\sqrt{3}$,
∴b=$\sqrt{3+2\sqrt{3}}$,
∴双曲线的渐近线方程为y=±$\sqrt{3+2\sqrt{3}}$x.
故选:A.

点评 本题考查双曲线的方程与性质,考查直线方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{c^2}{{{x^2}+ax+a}}$,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1>0,S3=S10,则当Sn取最大值时,n的值为(  )
A.6B.7C.6或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+t\\ y=\sqrt{3}t\end{array}\right.(t为参数)$,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为$ρ=2\sqrt{3}sinθ$.
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点A(x1,y1),B(x2,y2)是椭圆$\frac{{x}^{2}}{4}$+y2=1上两点,若过点A,B且斜率分别为-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的两直线交于点P,且直线OA与直线OB的斜率之积为-$\frac{1}{4}$,E($\sqrt{6}$,0),则|PE|的最小值为2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.m、n∈R+,mn=2,问2m+4n是否有最值?如有,请求值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设随机变量X服从正态分布N(μ,σ2)(σ>0),若P(X<-1)+P(X<0)=1,则μ的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(-1,0),B(5,6),P(3,4),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,则λ=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在直角梯形ABCD中,AB⊥AD,AB∥CD,E为CD中点,AB=2CD=4,若$\overrightarrow{AE}$•$\overrightarrow{BE}$=4,则$\overrightarrow{AC}$•$\overrightarrow{BC}$=3.

查看答案和解析>>

同步练习册答案