精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax+b,且对任意的实数x都有f(1+x)=f(1-x)成立.
(Ⅰ)求实数a的值;
(Ⅱ)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.
分析:(Ⅰ)由f(1+x)=f(1-x)可得函数关于x=1对称,然后求实数a的值;
(Ⅱ)利用单调性的定义进行证明即可.
解答:解:(Ⅰ)方法1:
由f (1+x)=f (1-x)得,
(1+x)2+a(1+x)+b=(1-x)2+a(1-x)+b,
整理得:(a+2)x=0,
由于对任意的x都成立,∴a=-2.
方法2:
由f (1+x)=f (1-x)得,函数关于x=1对称,
则对称轴为-
a
2
=1
,解得a=-2.
(Ⅱ)根据(Ⅰ)可知 f ( x )=x2-2x+b,
下面证明函数f(x)在区间[1,+∞)上是增函数.
设x1>x2≥1,
则f(x1)-f(x2)=(x12-2x1+b)-(x22-2x2+b
=(x12-x22)-2(x1-x2)=(x1-x2)(x1+x2-2)
∵x1>x2≥1,则x1-x2>0,且x1+x2-2>2-2=0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
故函数f(x)在区间[1,+∞)上是增函数.
点评:本题主要考查二次函数的图象和性质,以及利用定义法证明和判断函数的单调性,考查学生的推理判断能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案