精英家教网 > 高中数学 > 题目详情

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围.

(Ⅰ)椭圆的标准方程为;(Ⅱ).

解析试题分析:(Ⅰ)由抛物线的焦点为,点关于坐标原点对称,以为焦点的椭圆C过点,故可用待定系数法求椭圆方程,设椭圆的标准方程为,由条件求出即可;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围,这是直线与圆锥曲线交点问题,可采用设而不求的解题思想,设出直线的方程(注意需讨论斜率不存在情况),与A,B两点坐标,利用根与系数关系来解,当直线斜率不存在时,直接求解A,B的坐标得到的值,当直线斜率存在时,设出直线方程,和椭圆方程联立后,利用,消掉点的坐标得到λ与k的关系,根据λ的范围求k的范围,然后把转化为含有k的函数式,最后利用基本不等式求出的取值范围.
试题解析:(Ⅰ)设椭圆的半焦距为,由题意得
设椭圆的标准方程为
  ③
   ④         
将④代入③,解得(舍去)  
所以       
故椭圆的标准方程为                              4分
(Ⅱ)方法一:
容易验证直线的斜率不为0,设直线的方程为
将直线的方程代入中得:.       6分
,则由根与系数的关系,
可得:     ⑤
       ⑥             7分
因为,所以,且.
将⑤式平方除以⑥式,得:


所以                           10分
因为,所以
,所以


,因为
所以,即
所以.
,所以.
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别是,离心率为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方.
(Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C过点,两个焦点为
(1)求椭圆C的方程;
(2) 是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案