已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围.
(Ⅰ)椭圆的标准方程为;(Ⅱ).
解析试题分析:(Ⅰ)由抛物线的焦点为,点与关于坐标原点对称,以,为焦点的椭圆C过点,故可用待定系数法求椭圆方程,设椭圆的标准方程为,由条件求出即可;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围,这是直线与圆锥曲线交点问题,可采用设而不求的解题思想,设出直线的方程(注意需讨论斜率不存在情况),与A,B两点坐标,利用根与系数关系来解,当直线斜率不存在时,直接求解A,B的坐标得到的值,当直线斜率存在时,设出直线方程,和椭圆方程联立后,利用,消掉点的坐标得到λ与k的关系,根据λ的范围求k的范围,然后把转化为含有k的函数式,最后利用基本不等式求出的取值范围.
试题解析:(Ⅰ)设椭圆的半焦距为,由题意得,
设椭圆的标准方程为,
则 ③
④
将④代入③,解得或(舍去)
所以
故椭圆的标准方程为 4分
(Ⅱ)方法一:
容易验证直线的斜率不为0,设直线的方程为
将直线的方程代入中得:. 6分
设,则由根与系数的关系,
可得: ⑤
⑥ 7分
因为,所以,且.
将⑤式平方除以⑥式,得:
由
所以 10分
因为,所以,
又,所以,
故
,
令,因为
所以,即,
所以.
而,所以.
所以. 
科目:高中数学 来源: 题型:解答题
已知A(-5,0),B(5,0),动点P满足||,||,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.
(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线 于、两点,线段的中点为.记直线的斜率为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方.
(Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点,两个焦点为.
(1)求椭圆C的方程;
(2) 是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com