精英家教网 > 高中数学 > 题目详情
6.通过实验数据可知,某液体的蒸发速度y(单位:升/小时)与液体所处环境的温度x(单位:℃)近似地满足函数关系y=ekx+b(e为自然对数的底数,k,b为常数).若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为0.4升/小时.

分析 把x=0,y=0.1和x=30,y=0.8分别代人函数y=ekx+b中,求出eb与e10k的值,再求x=20时y的值.

解答 解:根据题意得,
x=0时,y=0.1;x=30时,y=0.8;
代入函数y=ekx+b中,
可得eb=0.1,e30k+b=0.8,
∴e30k=8,
∴e10k=2;
当x=20时,y=e20k+b=e20k•eb=(e10k2•eb=22×0.1=0.4;
即液体在20℃的蒸发速度是0.4升/小时.
故答案为:0.4.

点评 本题考查了函数模型的应用问题,也考查了求函数的解析式与利用函数解析式求值的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有54种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为45°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.则|$\overrightarrow{b}$|等于(  )
A.2$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sinωx(其中ω>0)图象过(π,-1)点,且在区间(0,$\frac{π}{3}$)上单调递增,则ω的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a≥0,b≥0,a2+b2=1,求证:ab+b≥$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我国是世界上严重缺水的国家之一,城市缺水问题比较突处,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,假设采用抽样调查方式,获得了100户居民某年的月均用水量(单位:t),并用这些样本数据分成9画出频率分布直方图,其中第3、4、5、6组的高度分别是0.15、0.22、0.25、0.14,第7、8、9、组高度比为3:2:1,直方图如图:
根据频率分布直方图:(1)分别求出第7、8、9组的频率;
(2)求该市居民均用水量的众数、平均数;
(3)若让88%的居民用水量均不超标,用水标准定为多少,比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,直线l与双曲线右支及双曲线的渐近线交于A、B、C、D四点,四个点的顺序如图所示.
(1)求该双曲线的方程;
(2)求证:|AB|=|CD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.点P在直径为2的球面上,过P作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是(  )
A.$\frac{2\sqrt{70}}{5}$B.$\frac{3\sqrt{70}}{5}$C.$\frac{4\sqrt{15}}{5}$D.$\frac{6\sqrt{15}}{5}$

查看答案和解析>>

同步练习册答案