精英家教网 > 高中数学 > 题目详情

【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000公寓楼(每层的建筑面积相同).已知士地的征用费为,土地的征用面积为第一层的倍,经工程技术人员核算,第一层建筑费用为,以后每增高一层,其建筑费用就增加,设这幢公寓楼高层数为n,总费用为万元.(总费用为建筑费用和征地费用之和)

1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?

2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.

【答案】116;(2)设计这幢公寓为8楼层时,总费用最少为735万元

【解析】

1)先求出土地的征用的费用和建筑费用,再求总费用为=,解不等式即得解;(2)利用基本不等式求最少费用.

1)每层建筑面积,土地的征用的费用万元;

建筑费用

,即

),所以这幢公寓楼最高可以盖16层;

2)由(1)知

当且仅当时,即为最小值.

所以设计这幢公寓为8楼层时,总费用最少为735万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的图象在点处的切线方程;

(Ⅱ)设函数,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是,离心率,过点的直线交椭圆两点, 的周长为16.

(1)求椭圆的方程;

(2)已知为原点,圆 )与椭圆交于两点,点为椭圆上一动点,若直线轴分别交于两点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(常数),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为.

1)若MA重合,求曲线C的焦距.

2)若,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点F为圆C的圆心.

求抛物线的方程与其准线方程;

直线l与圆C相切,交抛物线于AB两点;

若线段AB中点的纵坐标为,求直线l的方程;

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD是正方形,平面平面ABCD,平面平面ABCD

证明:平面ABCD

若二面角的大小为,求PB与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,异面直线 所成的角为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案