精英家教网 > 高中数学 > 题目详情

【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若 =﹣2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

【答案】
(1)解:设圆心C(a,a),半径为r.

因为圆C经过点A(﹣2,0),B(0,2),

所以|AC|=|BC|=r,

解得a=0,r=2,

所以圆C的方程是x2+y2=4


(2)解:因为 =2×2×cos< >=﹣2,

的夹角为∠POQ,

所以cos∠POQ=﹣ ,∠POQ=120°,

所以圆心C到直线l:kx﹣y+1=0的距离d=1,

又d= ,所以k=0


(3)解:(ⅰ)当直线m的斜率不存在时,

直线m经过圆C的圆心C,

此时直线m与圆C的交点为E(0,2),F(0,﹣2),

EF即为圆C的直径,而点M(2,0)在圆C上,

即圆C也是满足题意的圆.

(ⅱ)当直线m的斜率存在时,设直线m:y=kx+4,

,消去y整理,得(1+k2)x2+8kx+12=0,

由△=64k2﹣48(1+k2)>0,得

设E(x1,y1),F(x2,y2),

则有

由①得 ,② ,③

若存在以EF为直径的圆P经过点M(2,0),则ME⊥MF,

所以

因此(x1﹣2)(x2﹣2)+y1y2=0,

即x1x2﹣2(x1+x2)+4+y1y2=0,)

所以16k+32=0,k=﹣2,满足题意.

此时以EF为直径的圆的方程为x2+y2﹣(x1+x2)x﹣(y1+y2)y+x1x2+y1y2=0,

亦即5x2+5y2﹣16x﹣8y+12=0.

综上,在以EF为直径的所有圆中,

存在圆P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圆P经过点M(2,0)


【解析】(1)设圆心C(a,a),半径为r.|AC|=|BC|=r,由此能求出圆C的方程.(2)由 =2×2×cos< >=﹣2,得∠POQ=120°,圆心C到直线l:kx﹣y+1=0的距离d=1,由此能求出k=0.(3)当直线m的斜率不存在时,圆C也是满足题意的圆;当直线m的斜率存在时,设直线m:y=kx+4,由 ,得(1+k2)x2+8kx+12=0,由此利用根的判别式、韦达定理,结合已知条件能求出在以EF为直径的所有圆中,存在圆P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圆P经过点M(2,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.

(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m(m为常数,且2m3),设每个水杯的出厂价为x(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.

(1)求该工厂的日利润y()与每个水杯的出厂价x()的函数关系式;

(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn +m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排的甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数

(1)列出满足题目条件的数学关系式并画出相应的平面区域

2问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内三个向量: =(3,2), =(﹣1,2), =(4,1)
(1)若( +k )∥(2 ),求实数k的值;
(2)设 =(x,y),且满足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设直线与曲线相交于 两点,当变化时,求的最小值.

查看答案和解析>>

同步练习册答案