精英家教网 > 高中数学 > 题目详情
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A.
n2+n
2
-
1
2n
B.
n2+n+4
2
-
1
2n-1
C.
n2+n+2
2
-
1
2n
D.
n2+n+4
2
-
1
2n
∵f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx,
∴f′(x)|x=
π
2
=an-an+1+an+2-an+1•sinx|x=
π
2
-an+2cosx|x=
π
2

=an-2an+1+an+2
∵f′(
π
2
)=0,
∴an-2an+1+an+2=0,即2an+1=an+an+2
∴数列{an}是等差数列,设其公差为d,
∵a2+a4=6,
∴2a1+4d=6,a1=1,
∴d=1,
∴an=1+(n-1)×1=n,
∴cn=an+
1
2an
=n+
1
2n

∴Sn=c1+c2+…+cn
=(1+2+…+n)+(
1
2
+
1
22
+…+
1
2n

=
(1+n)n
2
+
1
2
[1-(
1
2
)
n
]
1-
1
2

=
n2+n+2
2
-
1
2n

故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2a+sin(2a+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的前n项和是Sn=2n2-25n,试求数列{|an|}的前10项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn=2an-2n
(Ⅰ)求a1,a2
(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列
(Ⅲ)求数列{
n+1
2cn
}
的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于(  )
A.2008B.2010C.4018D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+2
,求数列{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足an = nkn(n∈N*,0 < k < 1),下面说法正确的是(    )
①当时,数列{an}为递减数列;
②当时,数列{an}不一定有最大项;
③当时,数列{an}为递减数列;
④当为正整数时,数列{an}必有两项相等的最大项.
A.①②B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列的通项公式,则数列的前项和取得最小值时的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列的前项和,则            .

查看答案和解析>>

同步练习册答案