【题目】已知函数.
(1)求的单调区间;
(2)若,求证:函数只有一个零点,且.
【答案】(Ⅰ)函数的单调递增区间是,单调递减区间是和当时,. 所以,函数的单调递减区间是当时,,函数的单调递增区间是,单调递减区间是和;(Ⅱ)证明见解析
【解析】
试题(Ⅰ)先求出函数的定义域,求出函数的导数,再令,求得解,
讨论当时及,列出函数与随的变化情况得到函数的单调区间
(Ⅱ)当时,由(Ⅰ)知,函数的极小值,极大值,并且极小值与极大值均大于0,又由函数在是减函数,可得至多有一个零点,又由可得函数只有一个零点,且,得到证明
试题解析:(Ⅰ)解:的定义域为.
令,或
当时,,函数与随的变化情况如下表:
所以,函数的单调递增区间是,单调递减区间是和
当时,. 所以,函数的单调递减区间是
当时,,函数与随的变化情况如下表:
所以,函数的单调递增区间是,单调递减区间是和.
(Ⅱ)证明:当时,由(Ⅰ)知,的极小值为,极大值为.
因为,且又由函数在是减函数,可得至多有一个零点. 又因为,所以 函数只有一个零点,且.
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, 于, .将沿折起至,使得平面平面(如图2), 为线段上一点.
图1 图2
(Ⅰ)求证: ;
(Ⅱ)若为线段中点,求多面体与多面体的体积之比;
(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学导师计划从自己所培养的研究生甲、乙两人中选一人,参加雄安新区某部门组织的计算机技能大赛,两人以往5次的比赛成绩统计如下:(满分100分,单位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩 | 87 | 87 | 84 | 100 | 92 |
乙的成绩 | 100 | 80 | 85 | 95 | 90 |
(1)试比较甲、乙二人谁的成绩更稳定;
(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)设为椭圆上任一点, 为其右焦点, 是椭圆的左、右顶点,点满足.
①证明: 为定值;
②设是直线上的任一点,直线分别另交椭圆于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】—般地,若函数的定义域为,值域为,则称为的“倍跟随区间”;特别地,若函数的定义域为,值域也为,则称为的“跟随区间”.下列结论正确的是( )
A.若为的跟随区间,则
B.函数不存在跟随区间
C.若函数存在跟随区间,则
D.二次函数存在“3倍跟随区间”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和椭圆, 是椭圆的左焦点.
(Ⅰ)求椭圆的离心率和点的坐标;
(Ⅱ)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元).
(1)求的值;
(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列说法
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若,则事件与互斥且对立
⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为.
其中正确的说法是______(写出全部正确说法的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com