精英家教网 > 高中数学 > 题目详情
17.已知一圆与y轴相切,且在直线y=x上截得的弦AB=2$\sqrt{7}$,圆心在直线x-3y=0上,求此圆的方程.

分析 设出圆心C的坐标为(a,b),半径为r,根据圆心C在直线x-3y=0上,列出关于a与b的关系式,用b表示出a,同时根据圆C与y轴相切,得到圆的半径r=|a|,由直线y=x与圆相交,利用点到直线的距离公式表示出圆心C到直线y=x的距离d,根据弦长的一半,弦心距d及圆的半径r构成直角三角形,利用勾股定理列出关于b的方程,求出方程的解得到b的值,进而得到a与半径的值,写出圆C的方程即可.

解答 解:设圆C的标准方程为(x-a)2+(y-b)2=r2
此时圆心坐标为(a,b),半径为r,
把圆心坐标代入直线x-3y=0中得:a=3b,
又圆C与y轴相切,∴r=|a|,
∵圆心C到直线y=x的距离d=$\frac{|a-b|}{\sqrt{2}}$=$\sqrt{2}$|b|,弦长的一半为$\sqrt{7}$,
∴根据勾股定理得:2b2+7=a2=9b2,解得b=±1,
若b=1,a=3,r=3,此时圆C的标准方程为(x-3)2+(y-1)2=9;
若b=-1,a=-3,r=3,此时圆C的标准方程为(x+3)2+(y+1)2=9,
综上,圆C的标准方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.

点评 此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理及勾股定理,当直线与圆相交时,常常利用弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有(  )
A.24种B.28种C.32种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两人骑自行车从相距s千米的两地同时出发,若同向而行,经过a小时甲追上乙,若相向而行,经过b小时两人相遇,设甲速为v1千米/小时,乙速为v2千米/小时,那么$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1
(1)求证:$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)设bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$,求证:b1+b2+b3+…+bn<2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1+3i)(4-i)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:关于x的不等式x2+ax+b<0的解集为(1,2).求:关于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=-3sin(2x+φ)(-π<φ<π),若f(x)≤f($\frac{π}{6}$)恒成立,则φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=2sin(ωx),其中ω>0,若函数f(x)在区间[-$\frac{π}{4}$,$\frac{2π}{3}$]上是增函数,则ω的取值范围是(0,$\frac{3}{4}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一个正方体的所有棱与空间的某一平面成角为α,则cosα的值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

同步练习册答案