精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)定义域为D,区间(m,n)⊆D,对于任意的x1,x2∈(m,n)且x1≠x2,则“f(x)是(m,n)上的增函数”是“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”的(  )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分又不必要条件

分析 由“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”?(x1-x2)[f(x1)-f(x2)]>0,?x1-x2与f(x1)-f(x2)同号.利用增函数的定义即可判断出结论.

解答 解:“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”?(x1-x2)[f(x1)-f(x2)]>0,?x1-x2与f(x1)-f(x2)同号.
∴对于任意的x1,x2∈(m,n)且x1≠x2,则“f(x)是(m,n)上的增函数”是“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”的充要条件.
故选:B.

点评 本题考查了不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3=0.
(1)若l1∥l2,求实数a的值;
(2)若l1⊥l2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出y关于x的回归直线方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=log0.5(x2-ax+4a)在[2,+∞)上单调递减,则a的取值范围是(-2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平面直角坐标系中,若点$({a-1\;,\;\;\frac{3a+1}{a-1}})$在第三象限内,则实数a的取值范围是$(-\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1中,点P在CDD1C1所在的平面上,满足∠PBD1=∠A1BD1,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共轭复数,则z•$\overline{z}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iD.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知y2=8x的焦点为F,则过F点且倾斜角为60°的直线被抛物线截得的弦长为(  )
A.8B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{2-i}{1+i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$在复平面上所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案