精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,,平面平面相交于点.

(1)求证:平面

(2)求二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

试题(1)可利用推论若两平面垂直,一个平面上的直线垂直于两平面交线,则直线垂直于另一个平面证明线面垂直。

2)以为原点,以所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量即可求得二面角余弦值。

试题解析:

1)证明:设的中点为,连.

四边形为菱形,且为正三角形,.

.

平面.

四边形为菱形,则有

又平面平面,平面平面

平面

平面.

2

如图,

为原点,以所在直线分别为轴、轴、轴建立空间直角坐标系,

.

从而,有.

.

设面的法向量为

又面的法向量为

设二面角的大小为,由图知为锐角,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处有相同的切线.

(Ⅰ)若函数的图象有两个交点,求实数的取值范围;

(Ⅱ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.

(1)请计算原棚户区建筑用地的面积及的长;

(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:

(1)求圆的圆心C的坐标和半径长;

(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于两点,求证:为定值;

(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使的面积最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,如图所示.

(1)求函数的解析式;

(2)应怎样分配投资资金,才能使投资获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.

(1)若蛋糕店每天做20个生日蛋糕,求当天的利润(单位:元)关于当天生日蛋糕的需求量(单位:个, )的函数关系;

(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:

(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;

(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当为何值时,轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面. 且点的中点.

1 求证:平面

2 与平面所成角的正弦值;

3 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列)的通项公式为.

1)分别求的二项展开式中的二项式系数之和与系数之和;

2)求的二项展开式中的系数最大的项;

3)记),求集合的元素个数(写出具体的表达式).

查看答案和解析>>

同步练习册答案