精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为曲线.

1)求曲线的方程;

2)设过点的直线与曲线相交于两点(点两点之间).是否存在直线使得?若存在,求直线的方程;若不存在,请说明理由.

【答案】12)存在,

【解析】

1)结合垂直平分线的性质和椭圆的定义,求出椭圆的方程.

2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,利用,结合向量相等的坐标表示,求得直线的斜率,进而求得直线的方程.方法一和方法二的主要曲边是直线的方程的设法的不同.

1)因为圆的方程为

所以,半径

因为是线段的垂直平分线,所以

所以

因为

所以点的轨迹是以为焦点,长轴长的椭圆.

因为

所以曲线的方程为

2)存在直线使得

方法一:因为点在曲线外,直线与曲线相交,

所以直线的斜率存在,设直线的方程为

由题意知,解得

因为

所以,即

把③代入①得

把④代入②得,得,满足

所以直线的方程为:

方法二:因为当直线的斜率为0时,

此时

因此设直线的方程为:

由题意知,解得

因为,所以

把③代入①得

把④代入②得,满足

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形,点的中点,现沿将平面折起,设.

1)当为直角时,求直线与平面所成角的大小;

2)当为多少时,三棱锥的体积为

3)在(2)的条件下,求此时二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,若曲线极坐标系方程为

,直线的参数方程为为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设点直线与曲线交于两点, 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点的四个顶点围成的四边形的面积为.

1)求的方程;

2)过的左焦点作直线交于两点,线段的中点为,直线为坐标原点)与直线相交于点,是否存在直线使得为等腰直角三角形,若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2-2xex,其中a≥0

1)当a=时,求fx)的极值点;

2)若fx)在[-11]上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是平行四边形,在平面上的射影为,且上,且的中点,四面体的体积为

(Ⅰ)求异面直线所成的角余弦值;

(Ⅱ)求点到平面的距离;

(Ⅲ)若点是棱上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系平面上的一列点,…,,记为,若由构成的数列满足,其中为与轴正方向相同的单位向量,则称点列.

1)判断,…,,是否为点列,并说明理由;

2)若点列.且点在点的右上方,(即)任取其中连续三点判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;

3)若点列,正整数,满足.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是(

A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐

B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐

C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐

D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

同步练习册答案