精英家教网 > 高中数学 > 题目详情
14.光线从A(-3,4)点射出,到x轴上的B点后,被x轴反射,这时反射光线恰好过点C(1,6),则BC所在直线的方程为(  )
A.5x-2y+7=0B.2x-5y+7=0C.5x+2y-7=0D.2x+5y-7=0

分析 设A(-3,4)点关于x轴的对称点为A′(-3,-4),根据反射定律,A′在直线BC上,再由两点式求得BC的方程.

解答 解:设A(-3,4)点关于x轴的对称点为A′(-3,-4),根据反射定律,A′在直线BC上,
再由两点式求得BC的方程为$\frac{y+4}{6+4}$=$\frac{x+3}{1+3}$,即 5x-2y+7=0,
故选:A.

点评 本题主要考查反射定律的应用,用两点式求直线的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=k(x+1)2-x,g(x)=lg(x+k)(k∈R).
(1)若f(1)=23,求函数g(x)在区间(4,+∞)上的值域;
(2)当0<g(1)≤1时,函数f(x)在区间[0,2]上的最小值大于h(x)=$\frac{1}{{tan}^{2}x}$+$\frac{4}{{cos}^{2}x}$在(0,$\frac{π}{4}$]上的最小值,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
①设O,A,B,C是不共面的四点,则对空间任一点P,都存在一唯一的有序实数组x,y,z,使$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$;
②若{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,则{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$}也能构成空间的一个基底;
③给定$\overrightarrow{a}$,$\overrightarrow{b}$,若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则存在无穷多个向量使得它与$\overrightarrow{a}$,$\overrightarrow{b}$一起构成空间的一个基底;
④若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$不能构成空间的一个基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$中至少有两个向量共线.
其中正确的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=tan($\frac{π}{4}$+x),则f($\frac{π}{3}$)=(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\sqrt{3}$-2D.-2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数.
(1)求φ的值.
(2)若f(x)图象上的点关于M($\frac{3}{4}$π,0)对称.
①求ω满足的关系式;
②若f(x)在区间[0,$\frac{π}{2}$]上是单调函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{1+3tanθ}{2cos2θ+sin2θ-1}$-$\frac{3+5tanθ}{cos2θ-4sin2θ-4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知递增的等比数列{an}的前n项和为Sn,a6=64,a4、a5的等差中项为3a3
(1)求{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{2n-1}}$,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知菱形ABCD边长为2,∠B=$\frac{π}{3}$,点P满足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,λ∈R,若$\overrightarrow{BD}$•$\overrightarrow{CP}$=-3,则λ的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二文上月考三数学试卷(解析版) 题型:填空题

在直三棱柱中,底面为直角三角形,上一动点,则的最小值是_____.

查看答案和解析>>

同步练习册答案