精英家教网 > 高中数学 > 题目详情

【题目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范围.

【答案】见解析

【解析】方法一 设f(x)=-cos2x+sinx(x∈(0,]).

显然当且仅当a属于f(x)的值域时,a=f(x)有解.

因为f(x)=-(1-sin2x)+sinx

=(sinx+)2

且由x∈(0,]知sinx∈(0,1].

易求得f(x)的值域为(-1,1].

故a的取值范围是(-1,1].

方法二 令t=sinx,由x∈(0,],可得t∈(0,1].

将方程变为t2+t-1-a=0.

依题意,该方程在(0,1]上有解.

设f(t)=t2+t-1-a.

其图象是开口向上的抛物线,对称轴t=-

如图所示.

因此f(t)=0在(0,1]上有解等价于

所以-1<a≤1.

故a的取值范围是(-1,1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在极坐标系中点C的极坐标为.

(1)求出以点C为圆心,半径为2的圆的极坐标方程(写出解题过程)并画出图形;

(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知[1,+∞).

(1)时,判断函数单调性并证明;

(2)时,求函数的最小值;

(3)若对任意[1,+∞),>0恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)若,求曲线在点处的切线方程;

(2)若,求零点的个数;

(3)若为整数,且当时, 恒成立,求的最大值.

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如下表所示,数学、物理成绩分别用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

关于t的回归方程;

(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).

附:回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对新研发的一种产品进行试销,得到如下数据及散点图:

其中 .

(1)根据散点图判断 哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?

(2)根据(1)的判断结果及数据,建立关于的回归方程(运算过程及回归方程中的系数均保留两位有效数字).

(3)定价为150元/ 时,天销售额的预报值为多少元?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.

(I)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;

(II)设函数F(x)=-x[g(x)+x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;

(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,设函数.

(1)求函数的最小正周期;

(2)已知分别为三角形的内角对应的三边长, 为锐角, ,且恰是函数上的最大值,求和三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证: .

查看答案和解析>>

同步练习册答案