精英家教网 > 高中数学 > 题目详情
如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线的夹角大小等于___________.

试题分析:∵∥AB,∴异面直线的夹角为直线AB与的夹角,连接,在中,,∴即异面直线的夹角大小等于
点评:利用平移法把异面直线的夹角转化为三角形中的夹角问题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一个三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过ACBCA1C1,B1C1的中点.则当底面ABC水平放置时,液面高为(       )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,直线(   )
A.异面且垂直B.异面但不垂直
C.相交且垂直D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)如图,将∠B=,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角BACD,若θ∈[,],MN分别为ACBD的中点,则下面的四种说法:

ACMN
DM与平面ABC所成的角是θ
③线段MN的最大值是,最小值是;
④当θ=时,BCAD所成的角等于.
其中正确的说法有    (填上所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面.于点,中点.

(1)用空间向量证明:AM⊥MC,平面⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

同步练习册答案