精英家教网 > 高中数学 > 题目详情

【题目】在极坐标中,直线l的方程为 ,曲线C的方程为 .
(1)求直线l与极轴的交点到极点的距离;
(2)若曲线C上恰好有两个点到直线l的距离为 ,求实数m的取值范围.

【答案】
(1)解:令 ,可得 与极轴的交点到极点的距离为

(2)解:直线 的直角坐标方程为 ,曲线 的直角坐标方程为 ,曲线 表示以原点为圆心, 为半径的圆,且原点到直线 的距离为 .若曲线 上恰好存在两个点到直线 的距离为 ,则

【解析】1.根据题意得“直线l与极轴的交点”即为( ρ,0),直线l与极轴的交点到极点的距离= ρ;
2..ρ sin θ = y、ρ cos θ = x、.ρ2=x 2 + y 2、 tan θ = ,求出直角坐标方程;3.根据求出直角坐标方程中曲线 C为圆,结合已知条件即可解出本题答案。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若正弦型函数有如下性质:最大值为4,最小值为;相邻两条对称轴间的距离为.

(1)求函数解析式;

(2)当时,求函数的值域;

(3)若方程在区间上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从 种服装、 种家电、 种日用品中,选出 种商品进行促销活动.
(1)试求选出 种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高 元,规定购买该商品的顾客有 次抽奖的机会: 若中一次奖,则获得数额为 元的奖金;若中两次奖,则获得数额为 元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是 ,请问: 商场将奖金数额 最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求 的值及直线 的直角坐标方程;
(2)圆 的极坐标方程为 ,试判断直线 与圆 的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线 的极坐标方程分别为 .
(1)求曲线 的公共点的个数;
(2)过极点作动直线与曲线 相交于点Q,在OQ上取一点P,使 ,求点P的轨迹,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z满足|z|= ,z2的虚部为2.
(1)求z;
(2)设z,z2 , z﹣z2在复平面对应的点分别为A,B,C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由正整数构成的数表,用aij表示i行第j个数(ijN).此表中ailaiii,每行中除首尾两数外,其他各数分别等于其肩膀上的两数之和.

(1)写出数表的第六行(从左至右依次列出).

(2)设第n行的第二个数为bnn≥2),bn

(3)令,记Tn为数列n项和,求的最大值,并求此时n的值.

查看答案和解析>>

同步练习册答案