分析 将原不等式化为(x-1)(ax-1)≥0,再对参数a的取值范围进行讨论,从而求出不等式的解集.
解答 解:原不等式可化为(x-1)(ax-1)≥0,
当a>0时,不等式可化为(x-1)(x-$\frac{1}{a}$)≥0,
该不等式对应方程的两个实数根为1和$\frac{1}{a}$;
若a>1,则1>$\frac{1}{a}$,不等式的解集为{x|x≤$\frac{1}{a}$或x≥1};
若a=1,则1=$\frac{1}{a}$,不等式化为(x-1)2≥0,解集为R;
若0<a<1,则1<$\frac{1}{a}$,不等式的解集为{x|x≤1或x≥$\frac{1}{a}$};
当a=0时,不等式化为-x+1≥0,解集为{x|x≤1};
当a<0时,不等式化为(x-1)(x-$\frac{1}{a}$)≤0,且$\frac{1}{a}$<1,
解集为{x|$\frac{1}{a}$≤x≤1}.
点评 本题考查了含有字母系数的一元二次不等式的解法与应用问题,解题时应用分类讨论的数学思想,是综合题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0<a≤1 | B. | a>0或-1<a<0 | C. | -1≤a<0 | D. | -1≤a≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com