精英家教网 > 高中数学 > 题目详情

【题目】已知正方体的棱长为,其内有2个不同的小球,球与三棱锥的四个面都相切,球与三棱锥的三个面和球都相切,则球的体积等于______,球的表面积等于______

【答案】

【解析】

由题意可知三棱锥是边长为的正四面体,则球是三棱锥的内切球,设其半径为,,可知,设平面平面,且球和球均与平面相切于点,则球是正四面体的内切球,设其半径为,,最后代入数据计算即可.

因为正方体的棱长为,

所以三棱锥是边长为的正四面体,的高为,

设底面的中心为,连接,,,

则球是三棱锥的内切球,设其半径为,

则有

所以,

所以球的体积为,

又球与三棱锥的三个面和球都相切,

则设平面平面,且球和球均与平面相切于点,如下图所示,

则球是三棱锥的内切球,设其半径为,

,

因此在正四面体,,

所以球的表面积为,

故答案为:;.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即2019新型冠状病毒.202027日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前流行病学调查,潜伏期为1~14天,潜伏期具有传染性,无症状感染者也可能成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.

1)由直方图可认为答题者的成绩服从正态分布,其中分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)

2)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到

附:①;②,则;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“新冠肺炎”爆发后,某医院由甲、乙、丙、丁、戊5位医生组成的专家组到某市参加抗击疫情.五位医生去乘高铁,按规定每位乘客在进站前都需要安检,当时只有3个安检口开通,且没有其他旅客进行安检.5位医生分别从3个安检口进行安检,每个安检口都有医生去安检且不同的安检顺序视为不同的安检,则甲、乙2位医生不在同一个安检口进行安检的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若不等式对任意恒成立,求实数的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以线段EF为直径的圆内切于圆Ox2+y216

1)若点F的坐标为(﹣20),求点E的轨迹C的方程;

2)在(1)的条件下,轨迹C上存在点T,使得,其中MN为直线ykx+bb≠0)与轨迹C的交点,求△MNT的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票双色球中红色球由编号为个球组成.某彩民利用下面的随机数表选取组数作为个红色球的编号,选取方法是从随机数表(如下)第行的第列数字开始从左向右依次选取两个数字,则选出来的第个红色球的编号为(

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,判断的单调性;

(Ⅱ)当时,恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间;

2)判断上的零点的个数,并说明理由.(提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数在区间上的最值;

(Ⅱ)若是函数的两个极值点,且,求证:.

查看答案和解析>>

同步练习册答案