精英家教网 > 高中数学 > 题目详情
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪ (0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)
D

试题分析:设F(x)="f" (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.
∵F(-x)="f" (-x)g (-x)="-f" (x)•g (x)=-F(x).
故F(x)为(-∞,0)∪(0,+∞)上的奇函数.
∴F(x)在(0,∞)上亦为增函数.
已知f(-3)·g(-3)=0,必有F(-3)=F(3)=0.
构造如图的F(x)的图象,

可知F(x)<0的解集为x∈(-∞,-3)∪(0,3).
点评:导数是一个新内容,也是高考的热点问题,要多注意复习.解决该试题的关键是先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
是定义在上的奇函数,函数的图象关于轴对称,且当时,
(I)求函数的解析式;
(II)若对于区间上任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知
(I)如果函数的单调递减区间为,求函数的解析式;
(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;
(III)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)求函数的最小值;
(2)若≥0对任意的恒成立,求实数的值;
(3)在(2)的条件下,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的极值点与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设函数f(x)=x2+ex-xex.(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且其导函数的图像过原点.
(1)当时,求函数的图像在处的切线方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

同步练习册答案