精英家教网 > 高中数学 > 题目详情
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
(1)   (2)75   (3)10人
(1)由频率分布直方图中各个矩形的面积之和等于1可得:;
(2)这100名学生语文成绩的平均分为=75.
(3)因为语文成绩在这些分数段的人数人别为5,40,30,20,5,所以数学成绩在前四段分数段的人数人别为5,20,40,25,所以数学成绩在[50,90)之外的人数为10人.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x
2
4
5
6
8
y
30
40
60
50
70
 
(1)画出散点图;
(2)求y关于x的线性回归方程.
可能用到公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
阅读过莫言的
作品数(篇)
0~25
26~50
51~75
76~100
101~130
男生
3
6
11
18
12
女生
4
8
13
15
10
(1)试估计该校学生阅读莫言作品超过50篇的概率;
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
 
非常了解
一般了解
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在独立性检验中,统计量有两个临界值:3.841和6.635;当>3.841时,有95%的把握说明两个事件有关,当>6.635时,有99%的把握说明两个事件有关,当3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的="20." 87,根据这一数据分析,认为打鼾与患心脏病之间
A.有95%的把握认为两者有关
B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关
D.约有99%的打鼾者患心脏病

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
 
支持A方案
支持B方案
支持C方案
35岁以下
200
400
800
35岁以上(含35岁)
100
100
400
 
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知x与y之间的几组数据如下表:
x
0
1
2
3
y
0
2
6
7
 
则y与x的线性回归方程x+必过点(  )
A.(1,2)         B.(2,6)         C.        D.(3,7)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了了解调研高一年级新学生的智力水平,某校按l 0%的比例对700名高一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表l,表2.
表1:男生“智力评分”频数分布表
智力评分






频数
2
5
14
13
4
2
 
表2:女生“智力评分”频数分布表
智力评分






频数
1
7
12
6
3
1
 
(1)求高一的男生人数并完成下面男生的频率分布直方图;
(2)估计该校学生“智力评分”在[1 65,1 80)之间的概率;
(3)从样本中“智力评分”在[180,190)的男生中任选2人,求至少有1人“智力评分”在[185,190)之间的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段
(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计
从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,数据如下:
零件数(个)
10
20
30
40
50
60
70
80
加工时间
62
68
75
81
89
95
102
108
设回归方程为,则点在直线的(  )
A.左上方        B.右上方        C.左下方        D.右下方

查看答案和解析>>

同步练习册答案