精英家教网 > 高中数学 > 题目详情
17.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,短轴长为2,若直线l过点E(-1,0)且与椭圆交于A,B两点.
(1)求椭圆的标准方程;
(2)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.

分析 (1)由题意列关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆方程可求;
(2)由题意设出直线l的方程,与椭圆方程联立,化为关于y的一元二次方程,利用根与系数的关系求得|y1-y2|,代入三角形面积公式,换元后利用基本不等式求得最值.

解答 解.(1)由题意,$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2b=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,
故椭圆的标准方程为$\frac{x^2}{4}+{y^2}=1$;
(2)存在△AOB面积的最大值.
∵直线l过点E(-1,0),可设直线l的方程为 x=my-1.
则$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my-1.\end{array}\right.$,整理得(m2+4)y2-2my-3=0.
由△=(2m)2+12(m2+4)>0.
设A(x1,y1),B(x2,y2).
则${y}_{1}+{y}_{2}=\frac{2m}{{m}^{2}+4},{y}_{1}{y}_{2}=\frac{-3}{{m}^{2}+4}$.
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4\sqrt{{m}^{2}+3}}{{m}^{2}+4}$.
∴${S_{△AOB}}=\frac{1}{2}|{OE}|•|{{y_1}-{y_2}}|$=$\frac{{2\sqrt{{m^2}+3}}}{{{m^2}+4}}=\frac{2}{{\sqrt{{m^2}+3}+\frac{1}{{\sqrt{{m^2}+3}}}}}$.
设$g(t)=t+\frac{1}{t}$,$t=\sqrt{{m^2}+3}$,$t≥\sqrt{3}$.
则g(t)在区间$[\sqrt{3},+∞)$上为增函数,
∴$g(t)≥\frac{{4\sqrt{3}}}{3}$.
∴${S_{△AOB}}≤\frac{{\sqrt{3}}}{2}$,当且仅当m=0时取等号,即${({S_{△AOB}})_{max}}=\frac{{\sqrt{3}}}{2}$.
∴S△AOB的最大值为$\frac{{\sqrt{3}}}{2}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知方程$\frac{{x}^{2}}{k-5}$+$\frac{{y}^{2}}{3+k}$=-1表示椭圆,求k的取值范围.(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)=e|x|+cosx+|x|,则满足f(2x-1)<f(3)的x的取值范围是(  )
A.(-2,1)B.[-2,1)C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(x+2)=f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有四个零点,则实数k的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x≥0,x2+x-1<0”的否定是“?x<0,x2+x-1<0”
C.“x=-1”是“x2-5x-6=0”的必要不充分条件
D.命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$.
(1)求证:CD⊥平面PAC;
(2)如果N是棱AB上一点,且三棱锥N-BMC的体积为$\frac{1}{3}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a,b,c分别是△ABC的三个内角A、B、C的对边,b=1,c=2,A=60°,则边a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知cosα+2sinα=-$\sqrt{5}$,求 tanα 的值.
(2)已知tan(π+α)=$\frac{1}{2}$,求$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{x+2}&{({x≤-1})}&{\;}\\{2x}&{({-1<x<2})}&{\;}\\{\frac{x^2}{2}}&{({x≥2})}&{\;}\end{array}}\right.$则$f[{f({-\frac{7}{4}})}]$=(  )
A.$\frac{1}{4}$B.-7C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案