精英家教网 > 高中数学 > 题目详情

斜率为2的直线过(3,5)、(a,7)、(-1,b)三点,则ab等于(  )

A.4            B.-7 

C.1            D.-1

C

[解析] 由题意,得2=

a=4,b=-3,∴ab=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,斜率为1的直线过抛物线Ω:y2=2px(p>0)的焦点F,与抛物线交于两点A,B,
(1)若|AB|=8,求抛物线Ω的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求△ABC的面积S的最大值;
(3)设P是抛物线Ω上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y+4=0
(1)过P(-2,5)作圆C的切线,求切线方程;
(2)斜率为2的直线与圆C相交,且被圆截得的弦长为
3
,求此直线方程.
(3)Q(x,y)为圆C上的动点,求
x2+y2+6x+4y+13
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
a
=(-2,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(理)斜率为1的直线过抛物线y2=2px(p>0)的焦点,且与抛物线交于两点A、B.
(1)若p=2,求|AB|的值;
(2)将直线AB按向量
a
=(-p,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(p,0),D为抛物线y2=2px(p>0)上一动点,是否存在直线l,使得l被以CD为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案