精英家教网 > 高中数学 > 题目详情
直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且∠AOB=120°(O是坐标原点),则点P(a,b)与点(1,1)之间距离的最大值为(  )
A、2+
2
B、4
C、
2
D、1+
2
考点:直线与圆的位置关系
专题:直线与圆
分析:根据∠AOB=120°,得到圆心O到直线ax+by=1的距离d=
1
2
,建立关于a,b的方程,利用数形结合即可得到结论.
解答: 解:∵直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且∠AOB=120°(O是坐标原点),
∴圆心O到直线ax+by=1的距离d=
1
a2+b2
=
1
2

即a2+b2=4,
则点P(a,b)与点C(1,1)之间距离|PC|=
(a-1)2+(b-1)2

则由图象可知点P(a,b)与点(1,1)之间距离的最大值为|OP|+2=
2
+2

故选:A.
点评:本题主要考查直线和圆的位置关系的应用以及两点间距离的求解,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(x+φ),0<φ<
π
2
,且f(0)=1.
(1)求φ的值及函数f(x)的单调递增区间;
(2)已知f(α-
π
4
)=
4
2
5
π
2
<α<π,f(β+
π
4
)=-
12
2
13
π
2
<β<π,求cos(α+β)值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(x,2,0),
b
=(3,2-x,x),且
a
b
的夹角为钝角,则x的取值范围是(  )
A、x<-4B、-4<x<0
C、0<x<4D、x>4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(π-ωx)-sin(
π
2
-ωx)(ω>0)的图象与x轴相邻两交点的距离为π.
(1)求ω的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求
b-c
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=-log
1
2
x2-log
1
4
x+2在2≤x≤4范围内的值域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2(a-1)x=2的减区间是(-∞,4],求实数a的范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1:(a-2)x+3y+a=0,l2:ax+(a-2)y-1=0互相垂直,则实数a的值为(  )
A、-3B、2或-3
C、2D、-2或3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b为实数,命题甲:ab>b2,命题乙:a<b<0,则命题甲是命题乙的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A是函数f(x)=log
1
3
(x-1)
的定义域,集合B是函数g(x)=2x,x∈[-1,2]的值域,求集合A,B,A∪B.

查看答案和解析>>

同步练习册答案