【题目】已知圆过点和点,且圆心在直线上.
(1)求圆的方程;
(2)过点作圆的切线,求切线方程.
(3)设直线,且直线被圆所截得的弦为,满足,求直线的方程.
【答案】(1) x2+y2-6x+4y+4=0. (2) 或.(3)y=x-1或y=x-4.
【解析】试题分析:(1)设圆心C(a,b),由两点间距离公式及圆心在直线上,列出方程组,求出圆心坐标,进而求出圆半径,由此能求出圆C的方程.
(2)当切线的斜率k存在时,设过点(6,3)的切线方程为kx﹣y﹣6k+3=0,则圆心C(3,﹣2)到切线的距离d=,求出k,从而求出切线方程;当切线斜率k不存在时,切线方程为x=6,成立.由此能求出切线方程.
(3)由题意得OA⊥OB,从而|OA|2+|OB|2=|AB|2,进而解得m=-1或m=-4,由此能求出直线l的方程.
试题解析:
(Ⅰ)设圆C的方程为x2+y2+Dx+Ey+F=0,
则,解得D=-6,E=4,F=4,
所以圆C的方程为x2+y2-6x+4y+4=0.
(Ⅱ)圆C的方程为,
当斜率存在时,设切线方程为,则
,解得,
所以切线方程为,即.
当斜率不存在时, .
所以所求的切线方程为或.
(Ⅲ)直线l的方程为y=x+m.
设A(x1,y1),B(x2,y2),
则联立消去y得2x2+2(m-1)x+m2+4m+4=0,(*)
∴∴y1y2=(x1+m)(x2+m)=x1x2+m
∵∠AOB=90°,∴|OA|2+|OB|2=|AB|2,
∴=(x1-x2)2+(y1-y2)2,
得x1x2+y1y2=0,∴2x1x2+m(x1+x2)+m2=0,
即m2+4m+4+m(1-m)+m2=0,解得m=-1或m=-4.
容易验证m=-1或m=-4时方程(*)有实根.
所以直线l的方程是y=x-1或y=x-4.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。
(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:
(1)求关于的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(结果保留两位小数)
参考公式: ,
参考数据: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
169 | 178 | 166 | 175 | 180 | |
75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素满足:,且时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图“月亮图”是由曲线与构成,曲线是以原点为中点, 为焦点的椭圆的一部分,曲线是以为顶点, 为焦点的抛物线的一部分, 是两条曲线的一个交点.
(Ⅰ)求曲线和的方程;
(Ⅱ)过作一条与轴不垂直的直线,分别与曲线依次交于四点,若为的中点, 为的中点,问: 是否为定值?若是求出该定值;若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式:
①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;
③C135﹣C71C64﹣C65; ④C72C113;
其中能成为N的算式是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com