精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线在第一象限内的点到焦点的距离为

1,过点, 的直线与抛物线相交于另一点,求的值

2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

【答案】(1);(2)时, 的长为定值

【解析】试题分析:1)根据抛物线的性质可得到焦点的距离为可得出,求出的方程,联立抛物线,故而可得 ,即可得最后结果;(2)设出直线的方程为,设 ,与抛物线方程联立,运用韦达定理得 ,由,得,将 代入可得的值,利用直线截圆所得弦长公式得,故当时满足题意.

试题解析:1∵点,解得

故抛物线的方程为: ,当时,

的方程为,联立可得,

又∵

2)设直线的方程为,代入抛物线方程可得

得:

整理得

代入解得∴直线

圆心到直线l的距离

显然当时, 的长为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次. 求:
(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量| |=2,| |=1,(2 ﹣3 )(2 )=9.
(1)求向量 与向量 的夹角θ;
(2)求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本
中,青年教师有320人,则该样本的老年教师人数为( )

A.90
B.100
C.180
D.300

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果若干个函数的图象经过平移后能够重合,则称这些函数“互为生成”函数,给出下列函数:
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互为生成的函数是(
A.①②
B.①③
C.③④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集为R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范围;
(3)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数同时满足以下条件:①上是减函数,在上是增函数;②是偶函数;③处的切线与直线垂直.

(1)取函数的解析式;

(2)设,若存在实数,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案