精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求直线l的普通方程和圆C的直角坐标方程;

2)直线l与圆C交于AB两点,点P(2,1),求|PA||PB|的值.

【答案】1)直线的普通方程,圆的直角坐标方程:.2

【解析】

1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.

2)将直线的参数方程代入圆的直角坐标方程,利用一元二次方程根和系数关系式即可求解.

1)直线l的参数方程为t为参数),转换为直角坐标方程为x+y30.

C的极坐标方程为ρ24ρcosθ3,转换为直角坐标方程为x2+y24x30.

2)把直线l的参数方程为t为参数),代入圆的直角坐标方程x2+y24x30

得到

所以|PA||PB||t1t2|6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.若散点图中的样本点散布在从左下角到右上角的区域,则散点图中的两个变量的相关关系为负相关

B.残差平方和越小的模型,拟合的效果越好

C.用相关指数来刻画回归效果,的值越小,说明模型的拟合效果越好

D.线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “f(0)”是“函数f(x)是奇函数”的充要条件

B. p:,则

C. “若,则”的否命题是“若,则

D. 为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A是抛物线Ey22px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x1MN两点.

1)若|MN|2,求抛物线E的方程;

2)若0p1,抛物线E与圆(x5)2+y2=9x轴上方的交点为PQ,点GPQ的中点,O为坐标原点,求直线OG斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的最大值;

2)令,讨论函数的单调区间;

3)若,正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为开方作法本源图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了古法七乘方图”.故此,杨辉三角又被称为贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

基于上述规律,可以推测,当时,从左往右第22个数为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在AB实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在AB试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

1)求图中a的值,并求综合评分的中位数;

2)用样本估计总体,以频率作为概率,若在AB两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

(参考公式:,其中.)

查看答案和解析>>

同步练习册答案