精英家教网 > 高中数学 > 题目详情
4.已知复数z=$\frac{(1-i)^{2}}{1+i}$,则z=-1-i.

分析 利用复数的乘除法运用,即可得出结论.

解答 解:复数z=$\frac{(1-i)^{2}}{1+i}$=$\frac{-2i}{1+i}$=$\frac{-2i(1-i)}{2}$=-1-i,
故答案为:-1-i.

点评 本题考查复数的乘除法运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆的焦点是F1(-1,0)和F2(1,0),又过点(1,$\frac{3}{2}$).
(1)求椭圆的离心率;
(2)又设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)满足对任意x1,x2∈[0,2](x1≠x2),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,且函数f(x+2)是偶函数,则下列结论成立的是(  )
A.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)B.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0)时,f(x)=$\frac{1}{4^x}-\frac{a}{2^x}$(a∈R).
(1)讨论f(x)在(0,1]上的最大值;
(2)若f(x)是(0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线2x-y-3=0关于x轴对称的直线方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①直线l的方向向量与向量$\overrightarrow a=({cosα,sinα})$共线;
②若$0<α<\frac{π}{4}$,则直线l与直线y=x的夹角为$\frac{π}{4}-α$;
③直线l与直线xsinα-ycosα+n=0(n≠m)一定平行;
写出所有真命题的序号①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为$\frac{12k}{{\sqrt{S}}}$元(k为正常数).
(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b,c均为正数,且分别为函数$f(x)={2^x}-{log_{\frac{1}{2}}}x$,$g(x)={(\frac{1}{2})^x}-{log_{\frac{1}{2}}}x$,$h(x)={(\frac{1}{2})^x}-{log_{\frac{2}{3}}}x$的零点,则(  )
A.a<b<cB.c<b<aC.c<a<bD.a<c<b

查看答案和解析>>

同步练习册答案