A. | 第63行第2列 | B. | 第62行第12列 | C. | 第64行第30列 | D. | 第64行第60列 |
分析 根据已知中的三角形数表,可得前n行共有$\frac{n(n+1)}{2}$个数,先确定2015所在的行数,再由该行数的排列规律判断出列数,可得答案.
解答 解:由三角形数表中第n行共有n个数,
故前n行共有1+2+3+…+n=$\frac{n(n+1)}{2}$个数,
又由$\frac{62(62+1)}{2}$<2015<$\frac{63(63+1)}{2}$,
故2015在第63行,该行数据从左到右依次变小,
且第一个数为$\frac{63(63+1)}{2}$=2016,
故2015在第63行第2列,
故选:A
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:选择题
A. | C${\;}_{9}^{3}$ | B. | A${\;}_{9}^{3}$ | C. | A${\;}_{9}^{6}$ | D. | A${\;}_{9}^{3}$•A${\;}_{3}^{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
60分以下 | 61-70分 | 71-80分 | 81-90分 | 91-100分 | |
甲班(人数) | 3 | 6 | 11 | 18 | |
12乙班(人数) | 7 | 13 | 10 | 10 | 10 |
优秀人数 | 非优秀人数 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
P(x2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.028 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{24}$ | B. | -$\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{127}{2}$ | B. | $\frac{255}{2}$ | C. | 64 | D. | 128 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等边三角形 | B. | 不含60°的等腰三角形 | ||
C. | 钝角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com