【题目】(本小题满分12分)设函数,其中,曲线过点,且在点处的切线方程为.
(I)求的值;
(II)证明:当时,;
(III)若当时,恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).
规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.
(1)求的方程;
(2)设过点的动直线与相交于,两点,当的面积最大时,求的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.
(I)求直方图中的值及甲班学生每天平均学习时间在区间的人数;
(II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线(为参数),曲线(为参数).
(I)设与相交于两点,求;
(II)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线.设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点 .
(1)若在线段上,是的中点,证明;
(2)若的面积是的面积的两倍,求中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】重庆八中大学城校区与本部校区之间的驾车单程所需时间为,只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
(分钟) | 25 | 30 | 35 | 40 |
频数(次) | 100 | 150 | 200 | 50 |
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求的分布列与;
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记表示这3位教师中驾车所用时间少于的人数,求的分布列与;
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知|a|=4,|b|=8,a与b的夹角是120°.
(1) 计算:① |a+b|,② |4a-2b|;
(2) 当k为何值时,(a+2b)⊥(ka-b)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com