精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)设函数,其中,曲线过点,且在点处的切线方程为

I)求的值;

II)证明:当时,

III)若当时,恒成立,求实数的取值范围.

【答案】I;(II)见解析;(III.

【解析】

试题分析:I)求函数的导数,由曲线过点可得,由在点处的切线方程为可得,列出方程组,解之即可;(II,求,得用导数求函数的单调性,求出函数的最小值,证即可;III,由解之即可.

试题解析: I

.

.

II .

上单调递增,

上单调递增,

III

由(2)中知

.

,即时,单调递增,成立.

,即时,.

,令,得.

时,上单调递减,,不成立.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若为曲线的一条切线,求a的值;

(2)已知,若存在唯一的整数,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).

规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.

1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;

2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点椭圆的离心率为是椭圆的右焦点直线的斜率为为坐标原点

(1)求的方程

(2)设过点的动直线相交于两点的面积最大时的直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.

I)求直方图中的值及甲班学生每天平均学习时间在区间的人数;

II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数).

I)设相交于两点,求

II)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线.设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,平行于轴的两条直线分别交两点,交的准线于两点 .

(1)若在线段上,的中点,证明

(2)若的面积是的面积的两倍,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆八中大学城校区与本部校区之间的驾车单程所需时间为只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:

(分钟)

25

30

35

40

频数(次)

100

150

200

50

以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.

(1)求的分布列与

(2)某天有3位教师独自驾车从大学城校区返回本部校区,记表示这3位教师中驾车所用时间少于的人数,求的分布列与

(3)下周某天老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|a|4|b|8ab的夹角是120°.

(1) 计算:① |ab|,② |4a2b|


(2) 当k为何值时,(a2b)⊥(kab)?

查看答案和解析>>

同步练习册答案