精英家教网 > 高中数学 > 题目详情
已知圆C1:(x-1)2+y2=1;圆C2:x2+(y+2)2=1,则圆C1与C2的位置关系是(  )
分析:根据两圆的标准方程求出这两个圆的圆心和半径,求出圆心距,再根据两圆的圆心距C1C2大于半径之和,得出结论.
解答:解:已知圆C1:(x-1)2+y2=1;圆C2:x2+(y+2)2=1,则圆C1(1,0),C2(0,-2),
两圆的圆心距C1C2=
1+4
=
5
,大于半径之和,故两圆相离,
故选A.
点评:本题主要考查圆的标准方程,两圆的位置关系的判定方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆c1:(x+1)2+y2=8,点c2(1,0),点Q在圆C1上运动,QC2的垂直一部分线交QC1于点P.
(I)求动点P的轨迹W的方程;
(II)过点S(0,-
13
)且斜率为k的动直线l交曲线W于A、B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+y2=8,点C2(1,0),点Q在圆C1上运动,QC2的垂直平分线交QC1于点P.
(Ⅰ) 求动点P的轨迹W的方程;
(Ⅱ) 设M,N是曲线W上的两个不同点,且点M在第一象限,点N在第三象限,若
OM
+2
ON
=2
OC1
,O为坐标原点,求直线MN的斜率k;
(Ⅲ)过点S(0,-
1
3
)
且斜率为k的动直线l交曲线W于A,B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-2=0对称;
(1)求圆C2的方程,
(2)过点(2,0)作圆C2的切线l,求直线l的方程.

查看答案和解析>>

同步练习册答案