精英家教网 > 高中数学 > 题目详情

【题目】已知函数的部分图象如图所示,则下列判断正确的是(  )

A. 函数的图象关于点对称

B. 函数的图象关于直线对称

C. 函数的最小正周期为

D. 时,函数的图象与直线围成的封闭图形面积为

【答案】D

【解析】

由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得fx)的解析式,再根据余弦函数的图象和性质,判断各个选项是否正确,从而得出结论.

解:函数的部分图象,可得A=2,,∴ω=2.

再根据五点法作图可得2φ,∴φfx)=2sin(2x).

x,求得fx)=﹣2,为函数的最小值,故A错误;

x,求得fx)=﹣1,不是函数的最值,故B错误;

函数f(2x)=2sin(4x)的最小正周期为,故C错误;

时,2x,函数fx)的图象与直线y=2围成的封闭图形为xxy=2、y=﹣2构成的矩形的面积的一半,

矩形的面积为π(2+2)=4π,故函数fx)的图象与直线y=2围成的封闭图形面积为2π,

D正确,

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .

1)求数列的通项公式;

2)令设数列的前项和为

3)令恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,为了打赢疫情防控阻击战,我们执行了延长假期政策,在延长假期面前,我们停课不停学,河南省教育厅组织部分优秀学校的优秀教师录播《名师同步课堂》,我校高一年级要在甲、乙、丙、丁、戊5位数学教师中随机抽取3人参加录播课堂,则甲、乙两位教师同时被选中的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)有物理、化学、生物三个学科竞赛各设冠军一名,现有人参赛可报任意学科并且所报学科数不限,则最终决出冠军的结果共有多少种可能?

(2)有个数,从中取个数排成一个五位数,要求奇数位上只能是奇数,则共可排成多少个五位数?

(3)有个数,从中取个数排成一个五位数,要求奇数只在奇数位上,则共可排成多少个五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

1)求椭圆的方程;

2)过椭圆左焦点的直线与椭圆交于两点,直线过坐标原点且直线的斜率互为相反数,直线与椭圆交于两点且均不与点重合,设直线的斜率为,直线的斜率为.证明 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为4E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究黏虫孵化的平均温度(单位: )与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:

组号

1

2

3

4

5

6

平均温度

15.3

16.8

17.4

18

19.5

21

孵化天数

16.7

14.8

13.9

13.5

8.4

6.2

他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经计算得

(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)

(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1)

,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中, 底面,平面平面的中点.

(1)证明:

(2)若,且,求点到平面的距离.

查看答案和解析>>

同步练习册答案