【题目】在平面直角坐标系中,函数在第一象限内的图像如图所示,试做如下操作:把x轴上的区间等分成n个小区间,在每一个小区间上作一个小矩形,使矩形的右端点落在函数的图像上.若用表示第k个矩形的面积,表示这n个叫矩形的面积总和.
(1)求的表达式;
(2)利用数学归纳法证明,并求出的表达式
(3)求的值,并说明的几何意义.
科目:高中数学 来源: 题型:
【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
年龄 | ||||||
频数 | 10 | 30 | 30 | 20 | 5 | 5 |
赞成人数 | 9 | 25 | 24 | 9 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在,调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、,试在“8”字形曲线上求点,使得是直角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五边形中,四边形为长方形,为边长为的正三角形,将沿折起,使得点在平面上的射影恰好在上.
(Ⅰ)当时,证明:平面平面;
(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱、的交点记为.
(1)在三棱柱中,若过三点做一平面,求截得的几何体的表面积;
(2)求三棱柱中异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是等差数列,,且,,成等比数列.
(1)求的通项公式;
(2)求的前项和的最小值;
(3)若是等差数列,与的公差不相等,且,问:和中除第5项外,还有序号相同且数值相等的项吗?(直接写出结论即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com