精英家教网 > 高中数学 > 题目详情

【题目】已知R是实数集, ,则N∩RM=(
A.(1,2)
B.[0,2]
C.
D.[1,2]

【答案】B
【解析】解:∵M={x| <1}={x|x<0,或x>2},N={y|y= }={y|y≥0 },
故有 N∩CRM={y|y≥0 }∩{x|x<0,或x>2}=[0,+∞)∩((﹣∞,0)∪(2,+∞))
=[0,2],
故选 B.
【考点精析】本题主要考查了集合的交集运算和集合的补集运算的相关知识点,需要掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立;对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:CUA即:CUA={x|x∈U且x∈A};补集的概念必须要有全集的限制才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax﹣ ﹣5lnx,其中a∈R.
(1)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(2)设函数h(x)=x2﹣mx+4,当a=2时,若x1∈(0,1),x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,O在平面内,AB是O的直径,平面,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.

(1)求证:平面

(2)求证:平面平面

(3)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图:
附:临界值参考公式: ,n=a+b+c+d.

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民损款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,投抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

损款不超过500元

6

合计

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2﹣2x+2﹣a2)(a>0),g(x)=x2+6x+c(c∈R).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣4x﹣2,求a的值;
(2)求函数f(x)的单调区间;
(3)当a=1时,对x1∈[﹣2,2],x2∈[﹣2,2],使f(x1)<g(x2)成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知点A(-1,-2),B(1,3),P为x轴上的一点,求|PA|+|PB|的最小值;

(2)已知点A(2,2),B(3,4),P为x轴上一点,求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=2,且an=2an1﹣1(n∈N* , N≥2)
(1)求证:数列{an﹣1}为等比数列;并求数列{an}的通项公式;
(2)求数列{nan﹣n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为(
A.( ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣ax+a(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,证明:当0<x1<x2时,

查看答案和解析>>

同步练习册答案