精英家教网 > 高中数学 > 题目详情

在数列{an}、{bn}中,a1=2,b1=4,且anbnan+1成等差数列,bnan+1bn+1成等比数列(n∈N*).

(1)求a2a3a4b2b3b4,由此猜测{an},{bn}的通项公式,并证明你的结论;

(2)证明:+…+.

(1)由条件得2bnanan+1abnbn+1.

由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.

猜测ann(n+1),bn=(n+1)2.

用数学归纳法证明:

①当n=1时,由上可得结论成立.

②假设当nk(k≥1且k∈N*)时,结论成立,

akk(k+1),bk=(k+1)2

那么当nk+1时,ak+1=2bkak=2(k+1)2k(k+1)=(k+1)(k+2),bk+1=(k+2)2

所以当nk+1时,结论也成立.

由①②,可知ann(n+1),bn=(n+1)2对一切正整数都成立.

错因 第二问由于不等式的右端为常数,结论本身是不能用数学归纳法证明的,可考虑用放缩法证明,也可考虑加强不等式后,用数学归纳法证明.(2)当n=1时

假设nk(k∈N*)时不等式成立

+…+

nk+1时

+…+

到此无法用数学归纳法证明.

正解 (1)用实录(1)

(2)证明:.

n≥2时,由(1)知anbn=(n+1)(2n+1)>2(n+1)n.

+…+

.

综上,原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中an≠0,a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,则a1,a3,a5(  )
A、是等差数列B、是等比数列C、三个数的倒数成等差数列D、三个数的平方成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

下面几种推理过程是演绎推理的是(  )
A、两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
B、某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人
C、由平面三角形的性质,推测空间四面体的性质
D、在数列{an}中,a1=1,an=
1
2
(an-1+
1
an_-
1
)(n≥2),由此归纳出{an}的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an=4n-
5
2
,a1+a2+…+an=an2+bn,n∈N*,其中a,b为常数,则ab等于(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,且对任意大于1的正整数n,点(
an
an-1
)在直线2x-2y-
3
=0上,则an=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•湖北模拟)在数列{an}中,a1=1,a2=1,an+1=λan+an-1
(I)若λ=-
32
bn=an+1-aan,数列{bn}
是公比为β的等比数列,求α和β的值.
(II)若λ=1,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数.研讨是否存在正整数k和n,使得kan+2+an与kan+3+an+1有大于1的公约数,如果存在求出k和n,如果不存在请说明理由.

查看答案和解析>>

同步练习册答案