精英家教网 > 高中数学 > 题目详情

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

(1),
(2)函数在上单调递增,在单调递减.函数的极大值为40,极小值为8.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设函数
(1)求函数极值;
(2)当恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值;
(3)当时,求证对任意大于1的正整数恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(Ⅰ)求的最小值;
(Ⅱ)若上为单调增函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.
(1)求实数a的值;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算由曲线,直线围成图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)
已知函数函数的图象与的图象关于直线对称,
(Ⅰ)当时,若对均有成立,求实数的取值范围;
(Ⅱ)设的图象与的图象和的图象均相切,切点分别为,其中
(1)求证:
(2)若当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案