精英家教网 > 高中数学 > 题目详情

【题目】下列哪组中的函数f(x)与g(x)相等(
A.f(x)=x2
B.f(x)=x+1,g(x)= +1
C.f(x)=x,g(x)=
D.f(x)= ,g(x)=

【答案】C
【解析】解:对于A,f(x)=x2(x∈R),g(x)= =x2(x≥0),它们的定义域不同,不是相等函数;
对于B,f(x)=x+1(x∈R),g(x)= +1=x+1(x≠0),它们的定义域不同,不是相等函数;
对于C,f(x)=x(x∈R),g(x)= =x(x∈R),它们的定义域相同,对应关系也相同,是相等函数;
对于D,f(x)= (x≤﹣2x≥﹣1),g(x)= = (x≥﹣1),
它们的定义域不同,不是相等函数;
故选:C.
【考点精析】解答此题的关键在于理解判断两个函数是否为同一函数的相关知识,掌握只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)为定义在区间(﹣2,2)的奇函数,它在区间(0,2)上的图象为如图所示的一条线段,则不等式f(x)﹣f(﹣x)>x的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga ,(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)是否存在实数m使得f(x+2)+f(m﹣x)为常数?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的定义域是(
A.[﹣ ,﹣1)∪(1, ]
B.(﹣ ,﹣1)∪(1, )??
C.[﹣2,﹣1)∪(1,2]
D.(﹣2,﹣1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数 的定义域为A,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定义域为B,求
(1)A,B;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sin2x,2cos2x﹣1), =(sinθ,cosθ)(0<θ<π),函数f(x)= 的图象经过点( ,1).
(1)求θ及f(x)的最小正周期;
(2)当x∈ 时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x)若同时满足:①存在M>0,使得对任意的x1 , x2∈D,都有|f(x1)﹣f(x2)|<M;②f(x)的图象存在对称中心.则称f(x)为“P﹣函数”.
已知函数f1(x)= 和f2(x)=lg( ﹣x),则以下结论一定正确的是(
A.f1(x)和 f2(x)都是P﹣函数
B.f1(x)是P﹣函数,f2(x)不是P﹣函数
C.f1(x)不是P﹣函数,f2(x)是P﹣函数
D.f1(x)和 f2(x)都不是P﹣函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: (ab>0)的离心率为,其左焦点到点的距离为.不过原点O的直线与C相交于AB两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求ABP的面积取最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如下表:

投资股市

获利

不赔不赚

亏损

购买基金

获利

不赔不赚

亏损

概率

概率

(Ⅰ)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“买基金”,若一年后他们中至少有一人盈利的概率大于,求的取值范围;

(Ⅱ)若,某人现有万元资金,决定在“投资股市”和“购买基金”这两种方案中选择出一种,那么选择何种方案可使得一年后的投资收益的数学期望值较大.

查看答案和解析>>

同步练习册答案